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Some new aspects of qualitative molecular-orbital theory are developed within the con-
text of group theory and a symmetrized Hückel approximation. Conclusions concerning
the eigenvalue sums for sets of eigenfunctions of the same symmetries, the occurrence of
repetitions of symmetry-adapted projections and the relations between eigenvalues of Γg

and Γu symmetries are exemplified using the C120 cage structure of Ih point symmetry. The
implications of the orbit-by-orbit approach are outlined for larger clusters.

0. Introduction

Node counting, within the molecular-orbital approximation, is well known as
a technique for the identification of the qualitative ordering of molecular-orbital en-
ergies for structures giving rise to constant overlap integrals within the LCAO ap-
proximation [1,14,16,23]. The carbon cages, of which the fullerenes form the prime
example [10,19], provide a variety of structures for which the constant overlap con-
dition is not too bad an approximation and facilitate, in this report, the development
of some novel details of qualitative molecular-orbital theory within a Hückel approx-
imation. Because of the form of the regular representation of the Ih point group, the
C120 cage structure is used as the example upon which these ideas are demonstrated.
Larger clusters can be built from the allowed geometric orbits of the Ih group and this
type of construction and the procedure for larger clusters is illustrated for the C320

cage.

1. Eigenvalue sums

Consider P to be a graph associated with a point symmetry group G realised
in a regular geometric orbit, such as the I120 cage and A to be a matrix, such as
the Hückel-type adjacency matrix of such a structure, which commutes with G in its
action on the vector space with basis the set of vertices of G. This vector space can
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be identified with a complex group algebra CG, whose basis is the set of elements
of G, so that A can be regarded as acting on the elements of G. If G can be regarded
to act by left (or right) multiplication on CG, then it turns out that A corresponds to
right (or left) multiplication on CG by g1 + g2 + · · · + gr for some distinct elements
g1, g2, . . . , gr of the group. This conclusion follows from a more general result about
semi-simple algebras and arbitrary operators b which commute with the regular action,
but it can be validated also from inspection of the geometry of the edges of the graph
and the relating of this geometry to the action of A on the group elements.

In the identification of the regular orbit of vertices with the elements of G,
an arbitrary vertex ν0 can be chosen to be the identity element of G corresponding
to +1. Then for any gi, causing the transformation of ν0 to νi, the vertex νi is as-
sociated with the group element gi. It is easy to see that the g1 + g2 + · · · + gr,
whose left multiplication produces the same action as A, is made of the group el-
ements which move ν0 to its adjacent vertices ν1, ν2, . . . , νr. If an element gi ap-
pears then so does its inverse g−1

i (not necessarily distinct from gi itself), since, if g1

is the symmetry transformation from ν0 to the adjacent vertex ν1, then g−1
1 trans-

forms the pair (ν1, ν0) to (ν0, ν−1). The number r is the degree of the vertices of the
graph P .

The possibility of a weighted adjacency matrix being required to represent some
difference in properties of the paths from vertex to vertex would mean that A would
be represented by α1g1 + α2g2 + · · · + αrgr with α, the weight associated with the
edge from ν0 to νi, and αi = αj if g−1

i = gj .
It follows that the trace of A on the component of the regular space of irreducible

character Γ of the group is

Γ(1)
(
Γ(g1) + Γ(g2) + · · · + Γ(gr)

)
or, in the weighted case,

Γ(1)
(
α1Γ(g1) + α2Γ(g2) + · · ·+ αrΓ(gr)

)
.

Hence the sum of the eigenvalues corresponding to the distinct types of Γ-spaces
(ignoring the multiplicity of the dimension of each Γ-space) is

Γ(g1) + Γ(g2) + · · ·+ Γ(gr)

or

α1Γ(g1) + α2Γ(g2) + · · ·+ αrΓ(gr).

For the cases of some common molecular graphs the sums found for unweighted and
weighted cases are given in table 1. Many graphs can be made on a regular orbit by
varying the edges, but usually there is, at least, a common one associated with some
regular or semi-regular polyhedral structure.

The foregoing analysis can be extended to a graph wherein the vertices form an
orbit of a normal subgroup, H , of the given symmetry group G. The matrix A is
still represented by left multiplication on the group algebra CH by h1 + h2 + · · ·+ hr
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Table 1
The results of a group theory analysis for some point groups giving the eigenvalue sums for the cases of

unweighted and weighted adjacency matrices of trivalent polyhedra spanning the regular orbit.

Group Graph gi Γ Eigenvalue Weighted
sum sum

Ih 120 cage α, β, γ Ag 3 α+ β + γ
(great rhombicosidodecahedron or σ, σ, σ Au −3 −α− β − γ
truncated icosidodecahedron [5]) T1u 3 α+ β + γ

T1g −3 −α− β − γ
T2u 3 −α− β − γ
T2g −3 −α− β − γ
Hu −3 −α− β − γ
Hg 3 α+ β + γ
Gu 0 0
Gg 0 0

Td 24 cage α, β, γ A1 3 α+ β + γ
(truncated octahedron [5]) σd, σd, σd A2 −3 −α− β − γ

E 0 0
T1 −3 −α− β − γ
T2 3 α+ β + γ

Th 24 cage α, α, β Ag 3 2α+ β
(truncated cube [5]) C3, C2

3, σd Au 1 2α− β
Eg[Γ] 0 −α+ β
[Γ∗] 0 −α+ β

Eu[Γ] −2 −α− β
[Γ∗] −2 −α− β
Tg −1 −β
Tu 1 β

Oh 48 cage α, β, γ A1g 3 α+ β + γ
(great rhombicuboctahedron or σd, σd, σh A1u −3 −α− β − γ
truncated cuboctahedron [5]) A2g −1 α+ β − γ

A2u 1 −α− β + γ
Eg 4 2α+ 2β
Eu −4 −2α− 2β
T1g −3 −α− β − γ
T1u 3 α+ β + γ
T2g 1 α+ β − γ
T2u −1 −α− β + γ

(hi ∈ H) but the trace of the matrix on the Γ-type subspaces takes a different form
owing to the difference between the central idempotents or projection operators in CG
compared to those in CH. If the stabilizer (site group) [12] of the vertex ν0 in G is
1, g2, . . . , gs, then the trace of A on the Γ-type subspaces is

Γ(1)
s

(∑
i,j

Γ(higj)

)
.
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Table 2
Eigenvalue sums for weighted and unweighted common trivalent cases over orbits of

g/2 vertices of groups of order g.

Group Graph gi Γ Eigenvalue Weighted
sum sum

G = Ih 60 cage α, α, β Ag 3 2α+ β

H = I (truncated icosahedron [5]) C5 C5 C2 T1u
3+
√

5
2 α 3+

√
5

2

σ, σ, σ T1g
−3+
√

5
2 α−1+

√
5

2 − β
T2u

3−
√

5
2 α 3+

√
5

2

T2g
−3−
√

5
2 α−1−

√
5

2 − β
Hu −1 −α
Hg 2 α+ β
Gu −1 −α
Gg −1 −α

G = Oh 24 cage α, α, β A1g 3 2α+ β
H = O (truncated cube [5]) C3 C3 C2 A2u 1 2α− β

σd, σd, σh Eg 0 −α+ β
Eu −2 −α− β
T1g −2 −α− β
T1u 1 α
T2g 1 α
T2u 0 −α+ β

G = Oh 24 cage α, α, β A1g 3 2α+ β
H = O (truncated octahedron [5]) C4 C4 C2 A2g −3 −2α− β

σd, σd, σd Eg 0 0
T1g −1 −β
T1u −2 2α
T2g 1 β
T2u −2 −2α

G = Td 12 cage α, α, β A1 3 2α+ β
H = T (truncated tetrahedron [5]) C3 C3 C2 E 0 −α+ β

σd, σd, σd T1 −2 −α− β
T2 1 α

In most of the examples s = 2 and so in these case the formula reduces to

Γ(1)
2

(
Γ(h1) + Γ(h2) + · · ·+ Γ(hr) + Γ(h1g2) + Γ(h2g2) + · · ·+ Γ(hrg2)

)
.

As before, if the multiplicity, Γ(1), is dropped the formula further reduces to

1
2

(
Γ(h1) + Γ(h2) + · · ·+ Γ(hr) + Γ(h1g2) + Γ(h2g2) + · · ·+ Γ(hrg2)

)
or, in the weighted case,

1
2

(
α1Γ(h1) + α2Γ(h2) + · · ·+ αrΓ(hr) + α1Γ(h1g2) + α2Γ(h2g2) + · · ·+ αrΓ(hrg2)

)
.
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Of course, knowledge of the trace of the powers of A, allows one to calculate the
eigenvalues of A on this subspace and our method can be extended to do just that. A not
dissimilar method was used before to solve the Hückel problem for C60 analytically
[2,3] but did not exploit the explicit realization of A in regular-type representations,
as multiplication by the appropriate group elements.

The character-based approach [2,3] to the solution of the Hückel problem for
structures corresponding to regular orbits will be discussed elsewhere [8].

2. Repetitions

Consider a collection of points on the unit sphere exhibiting the point symme-
try G. These points form the basis of a vector space, V , acted on by G. A central
function, when evaluated at these points, yields a vector which transforms under the
group in the same way as the central function. If we take an irreducible subspace
of type Γ, then this projects in same manner into the space, V , to give either 0 or a
subspace of type Γ (by Schur’s lemma).

There is, however, no guarantee that the projections obtained by using the first
sufficient number of central functions will lead to projections on all the distinct sub-
spaces. For instance, there might be two subspaces of Γ in V , but the two projections
obtained might be in the same subspace. It would appear that there are definite cases
when the problems of repetitions can be handled easily by inspection and this is so in
the case of the I120 cage.

In table 3 the direct sums of the Ih irreducible representations obtained from
the irreducible subspaces of R3 are listed for all l levels up to 15 which is the first
value at which the direct sum includes the determinantly anti-symmetric irreducible
representation, Au, and is therefore necessary for a complete treatment of the regular
representation.

The vertices of the I120 cage generate the regular representation, ΓR, of the Ih

point group

ΓR = Ag ⊕ Au ⊕ 3T1g ⊕ 3T1u ⊕ 3T2g ⊕ 3T2u ⊕ 4Gg ⊕ 4Gu ⊕ 5Hg ⊕ 5Hu.

The complicated nature of the group is seen when Ag occurs two or more times in
the decomposition of the central function subspaces on the Ih cage. For Ih, there is
the trivial occurrence at l = 0, but the direct sum decomposition involves Ag, also, at
levels l equal 6 and 10.

Thus, if any central function f (x, y, z) of degree l is taken and multiplied by
the Ag functions from levels 6 or 10, the result corresponds to an l+ 6 or level l+ 10
function of the same symmetry type, but not one that is distinct. The projections
into V of f (x, y, z) and these higher level functions, do not produce distinct copies of
the symmetry.

The occurrences of redundant repetitions, for the projections of the icosahedral
harmonics of the I120 cage, are listed in table 4.
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Table 3
The irreducible symmetries of the icosahedral harmonics formed
as linear combinations of the general spherical harmonics at each

level l.

l-value of the general harmonic Direct sums in Ih

0 ag

1 t1u

2 hg

3 t2u ⊕ gu

4 gg ⊕ hg

5 hu ⊕ t1u ⊕ t2u

6 a1g ⊕ gg ⊕ t1g ⊕ hg

7 t2u ⊕ gu ⊕ hu ⊕ t1u

8 t2g ⊕ 2hg ⊕ 3gg

9 2gu ⊕ hu ⊕ t1u ⊕ t2u

10 ag ⊕ t1g ⊕ t2g ⊕ gg ⊕ 2hg

11 2t1u ⊕ t2u ⊕ 2hu ⊕ gu

12 ag ⊕ t1g ⊕ t2g ⊕ 2gg ⊕ 2hg

13 t1u ⊕ 2t2u ⊕ 2gu ⊕ 2hu

14 t1g ⊕ t2g ⊕ 2gg ⊕ 3hg

15 1au ⊕ 2t1u ⊕ 2t2u ⊕ 2gu ⊕ 2hu

Table 4
The occurrence of repetitions of the irreducible representations of
the central icosahedral harmonics projected onto the I120 cage. The
asterisk indicates when the projection into V of that function pro-

duces a subspace dependent on the earlier ones.

Type l

T1u 1 5 7∗ 9
T1g 6 10 12∗ 14
T2u 3 5 7
T2g 8 10 12
Gu 3 7 9 9∗ 11
Gg 4 6 8 10∗ 12
Hu 5 7 9 11 11∗ 13
Hg 2 4 6 8 8∗ 10 10∗

3. Node counting and the C120 structure

The Ih symmetry of C120 provides a good example for the illustration of the
foregoing analysis. The Hückel energies, under the assumption that the radial carbon
p-orbitals exhibit constant overlap with neighbours so that there is only one Hückel
parameter in the adjacency matrix, are given in table 5.

A comparison of the predictions in table 1 for the eigenvalue sums and the results
in table 5 shows complete agreement and for each type of irreducible symmetry, the
sums of the traces of three reflections are seen to be equal to the eigenvalue sums.
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Table 5
The Hückel eigenvalues for the linear combinations of the radial p-orbitals

of the C120 structure giving rise to the corresponding eigenfunctions.

Symmetry E values

ag 3.000
au −3.000
t1u 2.902 1.000 −0.902
t1g 0.902 −1.000 −2.902
t2u 2.176 1.000 −0.176
t2g 0.176 −1.000 −2.176
gu 2.545 0.439 −0.830 −2.154
gg 2.154 0.830 −0.439 −2.545
hu 1.828 0.466 −0.685 −1.888 −2.721
hg 2.721 1.888 0.685 −0.466 −1.828

Another detail of the results in table 5 is that the Γg and Γu pairs of eigen-
value sets appear in pairs of opposite sign. This occurs because the framework is
an even alternant, i.e., star labels can be attached to half of the cage vertices in
such a way that every starred vertex is surrounded by unstarred neighbours and vice
versa. Any eigenvector of eigenvalue Γ, therefore, can be converted to one at eigen-
value −Γ by reversing the relative phase of the starred and unstarred sets. The in-
version operation exchanges starred and unstarred sets in the I120 cage, hence the
association of the parity change in the eigenfunction with the change in sign of the
eigenvalue.

Node counting to generate a qualitative correlation diagram between the number
of nodes in the central harmonic function (the l value) and the Hückel molecular-orbital
energies of table 5 works as long as the data in table 4 are used to pick the l level
of the LCAO-MOs. For each set (ν) of harmonic projections of a given symmetry,
rendered mutually orthogonal on the I120 cage, the Hückel adjacency matrix (A) can
be block-diagonalized using the transpose, ν t, of V in the product ν tAν. The sets of
basic projections are chosen using the data in table 4 and it can be seen in figure 1
that there is a reasonable correlation between the numbers of nodes and the Hückel
energies especially when the relation, too, between the Γg and Γu eigenfunctions is
exploited. In the absence of this extra consideration of redundant repetitions, it is to
be emphasized that the correlation between ‘node counting’ and the Hückel results in
table 5 would not be found.

4. Large clusters

A considerable literature concerning group theoretical and Hückel analyses of
hypothetical large carbon clusters exibiting icosahedral point group symmetry has ac-
cumulated [6,15,17,18,21,22,25–29]. Basic to these analyses are constructions of the
cluster as a whole, that are based either on folding up nets drawn on the plane triangu-
lar tessellation or its dual the graphite sheet, or on propagation over the surface of the
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Figure 1. A correlation diagram of the Hückel MO eigenvalues of each symmetry for C120, on the left,
with the nodal character of the icosahedral harmonics upon which the final block-diagonalization of the
adjacency matrix is accomplished. Note that without the recognition that repetitions (Γ) of the icosahedral
harmonics, as products of the form Ag(at l = 6)⊗Γ occur on the 120 cage, little agreement with the
‘node counting’ proposition would be seen. In the diagram the conventional Mullikan notation has been
used. Thus, for example, 4gu is the symbol used to identify the fourth set of four gu eigenfunctions of the
Hückel calculation, rather than four sets of gu symmetry as in expressions for reducible representations.
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unit sphere of (for full Ih symmetry) 120 copies of a primitive spherical triangle that
joins poles of neighbouring C2, C3 and C5 axes. The orbit-based analysis and proce-
dure of symmetry-based diagonalisation of the adjacency matrix offer a complementary
perspective on the other methods.

Icosahedral fullerene structures, In, can be constructed for all distinct solutions
of the integer relation

n = 20
(
i2 + ij + j2),

where i > j, i > 0, j > 0 and (i, j) is a lattice vector on the equilateral triangulation
of the plane that is used to specify one of the twenty faces of the master icosahedral
net [4,6,9,10,15,18]. The cases i = j and j = 0 give rise to clusters with full Ih

symmetry, and all others, i.e., i 6= j 6= 0 give rise to clusters with only the rotational-
subgroup symmetry I.

A general result in Hückel theory [6], which turns out to be a special case of the
leapfrog theorem for the π structures of fullerenes [13], is that icosahedral fullerenes,
In, in which n is a multiple of 60 (i.e., when i − j is a multiple of 3) have properly
closed shells, with exactly n/2 bonding and n/2 anti-bonding eigenvectors and ten
electrons in the fivefold degenerate HOMO, whereas, in all other icosahedral cases, it
is n− 20 that is a multiple of 3 and such fullerenes are open shell with two electrons
in a fourfold degenerate HOMO level. The closed-shell cases have totally symmetric
‘Fries’ Kekule structures in which all pentagon edges are single and the maximum
number of hexagons are benzenoid [7]; they are also Clar polyhedra [11].

The orbit-by-orbit breakdown of the cage and, hence, the constitution of the
primitive spherical triangle can be related simply to the parameters i and j. Trivalency
implies that any icosahedral cage can be decomposed into at most three types of orbit
as aO20 + bO60 + cO120 with

n = 20a+ 60b+ 120c.

For the cages of I symmetry, c is always zero, a = 1 for i − j 6= 0 mod 3 and 0
otherwise, and b follows by subtraction as (i2 + j2 + ij − a)/3. For the cages of Ih

symmetry, a = 1 for j = 0, i = 0 mod 3, but zero for i = j, and b = i for both j = 0
and i = j, leaving c to follow by subtraction as (i2 + ij + j2 − a− 3b)/6.

Thus the first few icosahedral fullerenes C20, C60, C80, C140, C180, C240, C260, . . .
have decompositions (a, b, c) = (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 2, 0), (0, 3, 0), (0, 2, 1),
(1, 4, 0), . . . corresponding to their signatures (i, j) = (1, 0), (1, 1), (2, 0), (2, 1), (3, 0),
(2, 2), (3, 1), . . . and symmetries Ih, Ih, Ih, I, Ih, Ih, I, . . . . All the cages with a = 1
have open and all with a = 0 closed π shells.

For example, the C320 structure of Ih symmetry comprises one 20-point, three
60-point, and one 120-point orbit as shown in figure 2. These orbits are propagated
from the basic spherical triangular patch from two vertices lying on the line between C5

and C3 axes, one on the C3 axis itself, and one in the general position in the interior
of the triangle. With the exception of the O20 orbit, corresponding to occupation of
the C3 poles on the unit sphere, there is considerable freedom in the angular dispo-
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Figure 2. The C320 carbon cage structure and the component geometric orbits of the Ih point group. The
complete structure and the separate orbits are shown as Mollweide projections [4,9]. Note that the O20

is included in the projections of the other orbits to emphasize the manner in which these orbits can be
considered to be decorations of the O20 vertices, which are the locations on the unit sphere of the C3

axes of the Ih point group.
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Table 6
Direct-sum irreducible components of the permutation characters on the orbits of the Ih

point group.

Orbit Site group Direct sum

O12 C5v Ag ⊕ T1u ⊕ T2u ⊕ Hg

O20 C3v Ag ⊕ T1u ⊕ T2u ⊕ Gg ⊕ Gu ⊕Hg ⊕Hu

O30 C2v Ag ⊕ T1u ⊕ T2u ⊕ Gg ⊕ Gu ⊕ 2Hg ⊕ Hu

O60 Cs Ag ⊕ T1g ⊕ 2T1u ⊕ T2g ⊕ 2T2u ⊕ 2Gg ⊕ 2Gu ⊕ 3Hg ⊕ 2Hu

O120 C1 Ag ⊕Au ⊕ 3T1g ⊕ 3T1u ⊕ 3T2g ⊕ 3T2u ⊕ 4Gg ⊕ 4Gu ⊕ 5Hg ⊕ 5Hu

sition of the points of the other orbits; each 60-orbit has one degree of freedom and
each 120-orbit a further two even when points are all constrained to lie on the unit
sphere, and thus, for example, the number of structural parameters and the number
of Ag breathing vibrations of an icosahedral cage are simple functions of a, b and c
or, equivalently, the i, j signature.

Because of this rotational freedom, the 60 orbits of vertices are not always obvious
recognisable copies of the C60 fullerene; each isolated-pentagon fullerene has one copy
of the orbit wherein the vertices are connected as pentagonal rings, but can have other,
disconnected copies. The pentagons can adopt the same orientation as in C60 itself,
with edges perpendicular to the C5/C3 line, or point directly at one another, or be
found in any orientation in between. The truncated dodecahedron is also a realisation
of the 60-orbit and, in leapfrog fullerenes beyond C60, there is always one copy of
the C60 orbit, in which the second-neighbour links between vertices form 20 triangles
centred of the C3 axes.

Calculations of Hückel energies in such structures have been carried out by direct
diagonalisation [6,18] or by setting up the secular equations for the different symme-
try types of eigenfunctions [22,25–29] or by solving the factor characteristic [21,22]
equations which can be derived using the Lanczos technique [15] for sparse matrices.

The proposed approach in this report presents an alternative route to the eigen-
values and eigenfunctions of large carbon cages which is very easy to program. As
in the other two symmetry-based techniques, the dimensions of the final entities to
be transformed to return the eigenvalues and eigenvectors of any cage are simply the
numbers corresponding to the occurrences of the direct sum irreducible combinations
in each contributing orbit summed over the cage.

This orbit-by-orbit approach has the advantage that it facilitates the identifica-
tion of the contributions made by particular radial carbon p-orbitals sets to Hückel
eigenfunctions of a given symmetry as long as the proviso concerning repetitions is
observed. The direct sum representations for the orbits of the Ih point group are given
in table 6. For C320 and all Ih polyhedral carbon cages on more that 180 atoms, there
is at least one copy of the 120-point orbit, and all au orbitals must be localised on the
vertices of the 120-orbit. In C320, the presence of a copy of O20 ensures an open-shell
configuration for the neutral, with the HOMO–LUMO gap of the closed shell di-cation
falling between gu- and gg-type eigenvalue subspaces.
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Figure 3. The Hückel eigenfunctions, as amplitudes on the cage vertices for representative linear com-
binations of the sets 6gu and 6gg corresponding to the HOMO and LUMO sets, and the 1au linear
combination localized on the C120 case, since only for the regular representation Au is found to be a
component of the direct sum. For clarity, the circles representing individual local amplitudes have been

scaled by a factor of 100.
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Representative Hückel eigenfunctions of the part-filled 6gu HOMO of C320 and
the completely empty 6gg LUMO are shown in figure 3, together with the Hückel
eigenfunction of au symmetry confined to non-zero amplitudes only on the vertices
corresponding to the single O120 orbit of the icosahedral group. In the HOMO, max-
imum/minimum wave function amplitudes are found on the first of the O60 orbits of
figure 2, especially, for carbon atoms near the yz great circle of the unit sphere while
the absolute amplitudes of the components in the representative LUMO are relatively
large on the other orbits as well and when large are to be found on regions of the cage
near the xz great circle. The au Hückel eigenfunction in figure 3 (bottom) is confined
to vertices of the I120 orbit and the constant absolute value of the amplitude changes
sign from neighbour to neighbour. Thus it is determined fully by symmetry in this
case, where there is only one copy of the regular orbit. Moreover, because the vertices
of the 120-orbit are pairwise adjacent, the eigenvalue of the au orbital is −1.
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